A compact fourth-order spatial discretisation applied to the Navier-Stokes equations
نویسندگان
چکیده
منابع مشابه
A Compact Fourth - Order Finite Difference Scheme for the Steady Incompressible Navier - Stokes Equations
We note in this study that the Navier-Stokes equations, when expressed in streamfunction-vorticity fonn, can be approximated to fourth--order accuracy with stencils extending only over a 3 x 3 square of points. The key advantage of the new compact fourth-order scheme is that it allows direct iteration for low~to-mediwn Reynolds numbers. Numerical solutions are obtained for the model problem of ...
متن کاملFourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers
A new fourth order compact formulation for the steady 2-D incompressible Navier-Stokes equations is presented. The formulation is in the same form of the Navier-Stokes equations such that any numerical method that solve the Navier-Stokes equations can easily be applied to this fourth order compact formulation. In particular in this work the formulation is solved with an efficient numerical meth...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملA High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations
In this paper we continue the study, which was initiated in (Ben-Artzi et al. in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys. 205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical resolution of the pure streamfunction formulation of the time-...
متن کاملA Third-Order Upwind Compact Scheme on Curvilinear Meshes for the Incompressible Navier-Stokes Equations
This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates. The artificial compressibility approach is used, which transforms the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux difference splitting can be applied. The convective terms are approximated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANZIAM Journal
سال: 2016
ISSN: 1445-8810
DOI: 10.21914/anziamj.v56i0.9422